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Abstract—A typical firing doctrine is the Shoot-Look-Shoot
tactic. In this tactic, the defence launches a salvo of intercep-
tors against the targets (Shoot), assesses the outcomes of the
engagements (Shoot-Look), and launches another salvo (Shoot-
Look-Shoot) if time and the inventory of interceptors permit.
In the open literature, it is often assumed that the targets
are identical. This is not always true as targets come in with
different ranges, speeds, sizes, cross sections etc. In this paper, we
consider two types of targets. Each type of target has a different
number engagement opportunities due to their ranges and speeds.
Through the use of dynamic programming, a genetic algorithm,
and a recursive generating function, we determine the probability
of raid annihilation (the probability of neutralizing all of the
targets) for two different Shoot-Look-Shoot (SLS) tactics. The
first SLS tactic is based on variable size salvos and maximizes the
probability of raid annihilation (PRA) for heterogeneous targets.
The second SLS tactic is based on fixed-size salvos and is robust as
it is independent of the number and types of targets. Theoretical
results are validated through some computer simulations.

NOMENCLATURE

DP Dynamic Programming

GA Genetic Algorithm

GF Generating Function

PRA Probability of Raid Annihilation

SLS Shoot–Look–Shoot

SSPK Single Shot Probability of Kill

I. INTRODUCTION

A. Motivation

Firing tactics are of paramount importance in air defence

applications as they can affect the effectiveness of the defence

significantly. The choice of the best tactic depends on many

factors which often boil down to the single shot probability

of kill (SSPK), the number of engagement opportunities, and

the inventory of interceptors. In some cases, the defence

encounters different types of targets (i.e., heterogeneous in the

context of this paper) with different numbers of engagement

opportunities associated to each type. One of the critical

measures of effectiveness is the probability of raid annihilation

(PRA), i.e., the probability of successfully neutralizing all

targets. It is required for the defence to rapidly decide on the

allocation of interceptors in an optimal manner such that the

PRA is maximized. However, the computation of the optimal

PRA is nontrivial when the targets are heterogeneous and the

number of available interceptors is large. This clearly moti-

vates practical alternatives (as opposed to standard recursive

procedures) in determining the effectiveness of a defence for

neutralizing heterogeneous targets with a large number of

available interceptors.

B. Literature Review

The SLS tactics for minimizing the expected damage to a

terminal defence have been pioneered by Soland in 1987 [1],

where the limited inventory of interceptors and the number of

engagement opportunities are taken into consideration. Several

SLS tactics and their extensions are discussed in [2], [3].

Nguyen et al in [4] proposed the idea of generating functions

to determine the PRA in a SLS tactic with fixed-size salvos.

A few extensions on the optimal missile allocation problem

are introduced in [5] and in some references therein.

To the best of our knowledge, relatively little work has

been conducted for the case when the defence encounters

heterogeneous targets. In this work we address this problem

by incorporating evolutionary algorithms with a dynamic

programming approach to determine the PRA in maritime air

defence.

C. Contribution Statement

This paper contributes to the development of two differ-

ent SLS tactics. First, we propose an extension of Soland’s

(variable size) salvo tactic for heterogeneous targets. The

PRA for heterogeneous targets is maximized using dynamic

programming (DP). This idea is then extended to compute the

maximum PRA using genetic algorithm (GA) optimization.

Second, when the defence employs a number of fixed-size

salvos of interceptors, we propose a layer defence SLS tactic

for neutralizing both homogeneous and heterogeneous targets.

While the former tactic yields an optimal PRA for heteroge-

neous targets, the latter is a robust tactic which is independent

of the number of targets and their types.

D. Organization

The outline of this paper is as follows. In section II, we

give some preliminaries and assumptions made throughout

the paper. In section III, we describe the variable size salvo

SLS tactic and the use of dynamic programming to maximize

PRA. In section IV, we show how to implement the genetic

algorithm to maximize the PRA for the same tactic as the

one in section III. In section V, we model the outcomes

of the fixed-size salvo tactic using a generating function. In



section VI, we present numerical results. Finally, we conclude

in section VII.

II. PRELIMINARIES AND ASSUMPTIONS

We define the SLS firing tactic in maritime air defence as

follows. The defence has N interceptors and E engagement

opportunities in total to neutralize Q targets. The SSPK of a

defending interceptor is denoted by h ∈ [0, 1] and m = 1− h
is the “single shot probability of miss”. It is assumed that

the defence has the perfect kill assessment capability after

each shot (salvo of interceptor(s)) fired at a target. This means

that the defence has perfect knowledge of the outcome of an

engagement. Furthermore, we assume that the defence engages

targets in reverse chronological order, with e, e = 0, . . . , E,
engagement opportunities remaining for the defence to engage

targets before the attack takes place [1]. Note that e = 0
signifies that there is no more engagement opportunity left for

the defence to engage targets. In fact, the SLS strategy ends

when all the interceptors are fired, or no more engagement

opportunities are left (or no more time left), or all Q targets

are neutralized. For positive integers p, q, with p ≥ q, we use

the standard notation (
p

q

)
=

p!

q!(p− q)!

to represent binomial coefficients. Similar to [6] we let

bin(q,m)(i) =

(
q

i

)
mihq−i, i = 0, . . . , q,

to denote the probability of missing i(out of q) targets with i
independent trials of interceptors. N = {1, 2, . . .} denotes the

set of natural numbers and N0 = {0}∪N. The operator �·�(�·�)
determines the largest (smallest) integer smaller (greater) than

or equal to (·]).
III. VARIABLE SIZE SALVO SLS TACTIC

In this section, we determine a critical effectiveness, i.e., the

probability of raid annihilation (PRA), of a defence when

the targets are heterogeneous. In this context, heterogeneous

targets are meant to be described by the different types

(or groups) of targets based on their kinematics. We define

S(n, q, e) as the PRA when there are n interceptors left, q
targets survive to attack the defence, and e engagement op-

portunities remain. The defence launches the optimal number

of interceptors in each of the remaining engagement oppor-

tunities, for n = 0, . . . , N, q = 0, . . . , Q, and e = 0, . . . , E.
Pr(j|i, q, e) is the probability that j of the q targets survive the

eth engagement from the end, i ≤ n interceptors are launched

in an optimal manner at the eth engagement [1].

Intuitively, I = i
q interceptors are fired at each target. In

other words, each of the q targets is fired with a salvo of

size I interceptors, which is variable in this tactic. If I is

not an integer, which is the case in general, q = q + qI − i
of the q targets are assigned I = �I� interceptors each and

the remaining q̄ = i − qI are assigned Ī = �I� interceptors

each. If the Q targets are homogeneous (i.e., all targets follow

the same kinematic model), then the probability that j targets

survive the eth engagement is given by

Pr(j|i, q, e) =

⎧⎪⎨
⎪⎩
bin(q,mI)(j), if I ∈ N0,

pmax∑
p=pmin

[
bin(q,mI)(p)

] [
bin(q̄,mĪ)(j − p)

]
,

(1)

if I /∈ N0, pmin = j − min(j, q̄), and pmax = min(j, q̄).
Let S∗(n, q, e) be the optimal PRA, for n = 0, . . . , N,
q = 0, . . . , Q, and e = 0, . . . , E. Following [1], we employ

dynamic programming to optimize the PRA using the recursive

relation

S(n, q, e) = max
i

⎧⎨
⎩

q∑
j=0

Pr(j|i, q, e)S(n− i, j, e− 1)

⎫⎬
⎭ , (2)

for i = 0, . . . , n, with boundary conditions

S(n, q = 0, e) = 1 and (3)

S(n, q, e = 0) = δq,0. (4)

The interpretation of the boundary condition (3) stems from

the fact that the PRA is always one (hundred percent) if the

number of targets is zero. However, the boundary condition (4)

implies that if the number of targets that survive is non-zero

(i.e., q 
= 0) and no more engagement opportunities are left

(e = 0), then it is certain that the defence will be unsuccessful,

i.e., the PRA S(n, q, e = 0) = 0. For the case when q = 0
and e = 0, the PRA S(n, q, e = 0) = 1. The Kronecker delta

function, δq,0, in (4) is defined as

δq,0 =

{
1, if q = 0,

0, otherwise.
(5)

The extension of Soland’s variable size salvo tactic for

maximizing the PRA modeled by (2) is possible when the

targets are heterogeneous. For that, we consider two dif-

ferent types of targets: the first type is a group of targets

with “fast” speeds and the second type is that with “slow”

speeds. The number of targets with “fast” (“slow”) speeds is

denoted by qH(qL). Let �q denotes the vector of two types

of targets, i.e., �q = [qF , qL]
T . Clearly, the defence may

have two different engagement opportunities for neutralizing

these two types of targets. Let us denote them as the vector

�e = [e1, e2]
T , where e1(e2) engagements are possible before

the attack by the fast (slow) speed targets and e1 ≤ e2. In this

case, the globally optimal PRA is determined using dynamic

programming by the following recursive relation:

SH(n, �q,�e) = max
i1,i2⎧⎨

⎩
qF ,qL∑
j1,j2=0

Pr(j1|i1, qF , e1) Pr(j2|i2, qL, e2)SH(n′,�j, �e−�1)

⎫⎬
⎭ ,

(6)

for i1 = 0, . . . , n, i2 = 0, . . . , n, i1+i2 ≤ n, n′ = n−(i1+i2),
and �j = [j1, j2]

T . The boundary condition for the recursive



model (6) is given by

SH(n, �q, [1, e2]
T ) = max

i1
{Psalvo(qF , i1)S(i2, qL, e2)} ,

where Psalvo(qF , i1) is the probability of neutralizing qF
targets with i1 interceptors using the Salvo tactic and is given

by

Psalvo(qF , i1) =
(
1−mĪ

)q̄1 (
1−mI

)q
1 ,

with Ī = �i1/qF �, I = �i1/qF �, q1 = qF + qF I − i1 and

q̄1 = i1 − qF I.
It is important to point out that the dynamic programming

approach, by construction, given by the model (6) provides a

globally optimal PRA for heterogeneous targets. This is be-

cause the decision variables (number of interceptors assigned

for each type of targets), i1 and i2, are chosen by an exhaustive

search from 0, . . . , n and the allocation of interceptors to all

missing targets at each engagement opportunity through Pr(·)
in model (6) is optimal.

IV. GENETIC ALGORITHM

Clearly, the computation of the PRA using (6) in the

previous section suffers from an overwhelming degree of

computational complexity when n is large. Hence, a practical

alternative solution to deal with such an optimization problem

is to employ the Genetic Algorithm optimization technique.

The Genetic Algorithm, pioneered by Holland [7], has been

the subject of extensive research due to its global optimization

capability based on heuristic search, which mimics the mech-

anism of the biological evolution by natural selection. Even

though the genetic algorithm does not always guarantee global

optimal solutions, it is a powerful tool for solving complex

problems in many applications [8], [9], [10]. A simple yet de-

tailed implementation of the genetic algorithm for optimizing a

general class of objective functions can be found in [11]. Here

we present the pseudo code (see Algorithm 1) for maximizing

the PRA in (6) using the genetic algorithm with dynamic

programming. The key steps in determining the maximum

PRA for a fixed single shot miss probability is provided in the

function GA in Algorithm 1, where one-point crossover and

uniformly distributed mutation operators are used to generate

offsprings from a fixed sized populations. The technical details

of GA can be sought in [11] and some references therein but

omitted here for the conciseness purpose.

A special case of the SLS tactic given by (6) is when

the defence launches fixed-size salvos of interceptors at each

engagement opportunity. In the following, we detail a layer

defence SLS tactic which takes into account the fixed number

of salvos of interceptors available to the defence in computing

the PRA for homogeneous and heterogeneous targets.

V. FIXED-SIZED SALVO SLS TACTIC

In this section, we determine the PRA when the defence

launches fixed-size salvos of interceptors against targets for

all of the engagement opportunities. An efficient way to do

that is to express the probability distribution, Pr(0 ≤ X ≤ q)
in terms of a Generating Function (GF) [4], where X is the

Algorithm 1: Pseudo code to compute PRA using genetic

algorithm.

Input: n, �q (2-D vector), �e (2-D vector), and single shot

miss probability m = 1− h
Output: Maximum PRA, S∗(n, �q,�e,m).
begin

n̄ : minimum number of interceptors to execute GA

if n > n̄ then
• S∗(n, �q,�e,m) = GA(n, �q,�e,m)

else
• Use dynamic programming (6) to compute

S∗(n, �q,�e,m).

return S∗(n, �q,�e,m)

Function GA(n, �q,�e,m)
GEN: total number of generations (stopping criteria)

pm : mutation rate 0 < pm < 1, pop: population array

• Generate random population of r individuals

(i1, i2)
• PRA(r); //Compute r PRA values using (6)

// Select maximum PRA and its corresponding index

• [PRAmax,pop index] = max(PRA)
• sol = pop(pop index); //select best individual

repeat
• Generate offsprings (from each pair of

population) with a crossover probability to

generate rnew > r populations

• Apply mutation operator on each of the new

population with fixed pm
• PRA new(rnew); //rnew PRA values using (6)

• [PRAmax new, pop index new] =

max(PRA new)

if PRAmax<PRAmax new then
• PRAmax = PRAmax new

• pop index = pop index new

• sol new =

pop new(pop index);// individual with the

fastest fitness value
• Select the best r out of rnew population with

greater PRA (fitness) values

• Replace lowest PRA individual with sol new
until GEN is reached or satisfactory PRA is found
return Maximum PRA value and its individual

discrete random variable representing the number of targets to

be neutralized. Nguyen et al in [4] exploited GFs for solving

problems in missile defence. Similar to the variable size salvo

tactic presented in section III, we are interested in developing

a fixed-size salvo SLS tactic with an inventory of salvos of

interceptors, ns ≥ 0, available to the defence for a number of

engagement opportunities.

For that, we consider a salvo of interceptors of size s such

that sns = N, where N is the total number of interceptors

available to the defence. At each engagement opportunity,

a target is engaged with one salvo of interceptors yielding



two outcomes: the target is neutralized by the salvo with the

probability hs = 1− (1−h)s or it is missed by the salvo with

the probability ms = 1− hs.
In the following sections, we determine the PRA for both

homogeneous and heterogeneous targets.

A. PRA for Homogeneous Targets

In this case, the defence has the same number of engage-

ment opportunities, E, for all targets. For E ≥ 1, we define

the recursive operator for the e, 1 ≤ e ≤ E, remaining

engagement opportunities as

ge =

{
1 if e = 0,

ge−1ms + hs if e > 0.
(7)

Even though ge = 1, ∀e > 0, in (7) given the fact that

ms + hs = 1, it is the recursive structure of ge that is

important to determine the PRA which will be clearer later

in this section. The probability distribution for neutralizing q
homogeneous targets, Pr(0 ≤ X ≤ q), with E remaining

engagement opportunities can be expressed in terms of the

recursive GF defined by

GE(ns, q) :={
1 if E = 0,

(gE)
b0 = (gE−1ms + hs)

b0 if E > 0,
(8)

where b0 = min(q, ns) and the recursive operator g(·)
is defined in (7). If Pr(X = j) denotes the probability

of neutralizing j targets, then the model (8) implies that

GE(ns, q) = Pr(0 ≤ X ≤ q) =
∑q

j=0 Pr(X = j) = 1. The

closed form expression of the recursive GF (8) is presented in

Theorem 1 subject to the fact that the defence has ns salvos

of interceptors.

Theorem 1 (Recursive GF): Suppose that the defence has

fixed ns salvos of interceptors to neutralize q targets in

maximum E engagement opportunities. Given the recursive

operator defined in (7), the closed form expression of the re-

cursive GF (8) for q targets with E engagement opportunities,

(E > 0), is given by

GE(ns, q) =

E∏
e=1

be−1∑
le=0

bin(be−1,ms)(le), (9)

where be−1 = min(le−1, ns −
∑e−2

κ=0 bκ), for e = 2, . . . , E.
Proof: We prove this Theorem recursively on E. For that,

consider the case when the defence has only one engagement

opportunity (E = 1) to neutralize targets. Using (8),

G1(ns, q) = (ms + hs)
b0 ,

with b0 = min(ns, q) and the corresponding PRA is given by

S1(ns, q) =

⎧⎪⎨
⎪⎩
1 if q = 0,

0 if 0 ≤ ns < q,

hq
s if ns ≥ q.

(10)

Now consider the case when E > 1, ns > q, and the

defence engages the targets in reverse chronological order. The

defence survives the first engagement opportunity (from the

end) with its available interceptors and has more interceptors

for a possible second engagement of the targets that are missed

in the first engagement. Following (8) and (7), the GF at the

second engagement opportunity is given by

G2(ns, q) =

q∑
l1=0

(ms + hs)
b1 bin(q,ms)(l1), (11)

where b1 = min(l1, ns−q). The GF in the second engagement

opportunity (11) implies that l1 targets are missed in the first

engagement opportunity but a maximum of b1 missed targets

can be re-engaged with the remaining salvos of interceptors.

Suppose that the defence still has some salvos of interceptors

to re-engage targets that are missed during the second engage-

ment opportunity. Hence, the GF for the third engagement

opportunity is expressed as

G3(ns, q) =

q∑
l1=0

bin(q,ms)(l1)

b1∑
l2=0

(ms + hs)
b2 bin(l1,ms)(l2), (12)

where b2 = min(l2, ns − q − b1). Similar to model (11),

the GF (12) implies that l2 targets are missed in the sec-

ond engagement opportunity, however, a maximum of b2
targets will be re-engaged by the defence as it is limited by

the inventory of interceptors. If this SLS process continues

and b1, b2, . . . , bE−2 > 0, then the defence survives the

(E − 1)th engagement opportunity with its available salvos

of interceptors. Consequently, the GF for the Eth engagement

opportunity is given by the following expression:

GE(ns, q) =

q∑
l1=0

bin(q,ms)(l1)

b1∑
l2=0

bin(b1,ms)(l2)×

b2∑
l3=0

bin(b2,ms)(l3)

b3∑
l4=0

bin(b3,ms)(l4)×

...

bE−2∑
lE−1=0

(ms + hs)
bE−1 bin(bE−2,ms)(lE−1),

where bE−1 = min(lE−1, ns − q − ∑E−2
κ=1 bκ). The proof is

completed by the fact that

(ms + hs)
bE−1 =

bE−1∑
lE=0

bin(bE−1,ms)(lE).

and b0 = q < ns.

Note that if be−1 = le−1, for e = 2, . . . , E, then the defence

has no deficit of interceptors and is able to re-engage all the

missing targets until the last, Eth, engagement opportunity.

In order to determine the PRA, we expand the GF of the eth,



1 ≤ e ≤ E, engagement opportunity and sum all the terms that

involve hq
s, i.e.,

∑
ı,j cıjm

ı
sh

j
s, such that j = q, ı ≤ ns, and

cıj is the coefficient. Hence, the PRA at the eth, 1 ≤ e ≤ E,
engagement opportunity is determined by

Se(ns, q) = Ge(ns, q)
∣∣∣
q
=

∑
ı,j

cıjm
ı
sh

j
s

∣∣∣
j=q

. (13)

We illustrate the above recursive computation of the PRA

using the following Example.

Example 1 (PRA using fixed-size salvo SLS tactic):
Consider the case when the defence has ns = 6 salvos of

interceptors with the salvo size of s = 2, hence, the total

of 12 interceptors. The defence is required to neutralize

q = 3 homogeneous targets with the maximum of E = 3
engagement opportunities. We will determine the expression

for the PRA, SE=3(n2 = 6, q = 3), using the recursive

GF (9) illustrated above.

Obviously, for the first engagement the GF is

G1(6, 3) = (m2 + h2)
3
= m3

2+3m2
2h2+3m2h

2
2+h3

2. (14)

From Eq. (14), the expression for the PRA, using the gener-

alized model (13), is simply

S1(6, 3) = h3
2. (15)

The first, second, and the third terms of Eq. (14) respectively

mean that the defence has missed three, two, and one, targets.

Hence, each of the missing targets can be re-engaged with the

remaining three salvos of interceptors.

Using (11), we write the GF for the second engagement

opportunity as

G2(6, 3) = h3
2 + 3(m2 + h2)m2h

2
2+

3(m2 + h2)
2m2

2h2 + (m2 + h2)
3m3

2, (16)

and the PRA using (13),

S2(6, 3) = h3
2(1 +m2)

3. (17)

The second, third, and fourth term of Eq. (16), respectively,

reveal that the missing target(s) have been re-engaged for the

second time. In case the second engagement misses the tar-

get(s), the defence employs its third engagement opportunity,

which gives the GF (using (12)) as

G3(6, 3) = h3
2 + 3m2h

2
2 [h2 + (m2 + h2)m2] +

3m2
2h2

[
h2
2 + 2(m2 + h2)m2h2 + (m2 + h2)m

2
2

]
+

(m2 + h2)
3m3

2. (18)

In fact, the GF expression in (18) is the direct consequence

of the generalized recursive GF (9) for ns = 6, q = 3, and

E = 3. Using the model (13), the corresponding PRA is given

by

S3(6, 3) = h3
2(1 + 3m2 + 6m2

2 + 7m3
2). (19)

From Eqs. (15), (17) and (19), we observe that S3(6, 3) ≥
S2(6, 3) ≥ S1(6, 3), ∀h ∈ [0, 1]. This is true as the PRA

increases with the number of engagement opportunities.

In the next example (see Example 2), we show that even

though the defence has sufficient engagement opportunities, it

can not always exploit all the engagement opportunities due

to the deficit of interceptors for neutralizing targets.

Example 2: Consider ns = 5, q = 3, and E = 3. The direct

consequence of the recursive GF (9) in Theorem 1 gives

G3(5, 3) = h3
2 + 3m2h

2
2 [h2 +m2(m2 + h2)] +

3m2
2h2(m2 + h2)

2 + (m2 + h2)
2m3

2. (20)

The PRA (using Eq. (13)) in this case is

S3(5, 3) = h3
2(1 + 3m2 + 6m2

2).

Both examples (Example 1 and 2) show the power of the

recursive GF (9) in determining the PRA using the generalized

expression (13).

B. PRA for Heterogeneous Targets

As in the case of variable size salvo SLS tactic illustrated

in section III, each type of target has a different number

of engagement opportunities. As before, we consider only

two types of targets (“fast” and “slow”) with the number of

engagement opportunities E1 and E2, (E1 ≤ E2) respectively.

In order to determine the PRA for heterogeneous targets,

we define the recursive GF as follows:

GE1,E2(ns, qF , qL) := GE1(ns, qF )GE2(ns, qL). (21)

Similar to the case with homogeneous targets, we assume that

the defence has ns salvos of interceptors available. Following

Theorem 1, the closed-form expression of (21) is given in the

following Corollary.

Corollary 1: Given the fact that the recursive GF (9) exists

for each type of targets (“fast” or “slow” targets). There are

E1(E2) number of engagement opportunities for the defence

to engage “fast” (“slow”) targets and E1 ≤ E2. The closed-

form expression of the recursive GF (21) for heterogeneous

targets is given by

GE1,E2
(ns, qF , qL) =

b
(1)
0∑

l
(1)
1 =0

bin(b
(1)
0 ,ms)(l

(1)
1 )

b
(2)
0∑

l
(2)
1 =0

bin(b
(2)
0 ,ms)(l

(2)
1 )×

b
(1)
1∑

l
(1)
2 =0

bin(b
(1)
1 ,ms)(l

(1)
2 )

b
(2)
1∑

l
(2)
2 =0

bin(b
(2)
1 ,ms)(l

(2)
2 )×

...

b
(1)
E1−1∑

l
(1)
E1

=0

bin(b
(1)
E1−1,ms)(l

(1)
E1

)

b
(2)
E1−1∑

l
(2)
E1

=0

bin(b
(2)
E1−1,ms)(l

(2)
E1

)×

GE2−E1

(
ns −

E1−1∑
κ=0

(b(1)κ + b(2)κ ), l
(2)
E1

)
, (22)



where b
(1)
0 = min(qF , ns), b

(2)
0 = min(qL, ns − b

(1)
0 ),

b(1)e1 = min

(
l(1)e1 , ns −

e1−1∑
κ=0

(b(1)κ + b(2)κ )

)
,

b(2)e1 = min

(
l(2)e1 , ns −

e1−1∑
κ=0

(b(1)κ + b(2)κ )− b(1)e1

)
,

for e1 = 1, . . . , E1 − 1, and GE2−E1
((·), ·) in (22) is directly

derived using (8) and (9). Note the GF (22) clearly gives

priority to the “fast” targets as opposed to the “slow” targets.

This makes sense since the defence has less number of

engagement opportunities for the “fast” targets and needs to

neutralize this type of targets first.

The proof of this Corollary follows from the similar technique

presented in the proof of Theorem 1 except the fact that we

are now considering heterogeneous targets.

The PRA for heterogeneous targets using fixed-size salvos

of interceptors is determined as follows. We expand the

recursive GF (22) for the e1th, 1 ≤ e1 ≤ E1, and e2th,

1 ≤ e2 ≤ E2, engagement opportunities and sum all the terms

that involve hqF+qL
s , i.e.,

∑
ı,j cıjm

ı
sh

j
s, such that j = qF +qL,

ı ≤ ns, and cıj is the coefficient. The expression for the PRA

is as follows:

Se1,e2(ns, qF , qL) = Ge1,e2(ns, qF , qL)
∣∣∣
q=qF+qL

=
∑
ı,j

cıjm
ı
sh

j
s

∣∣∣
j=q=qF+qL

. (23)

For convenience, we determine the expression for the recur-

sive GF (22) and the corresponding PRA through Example 3.

Example 3 (Fixed-size salvo SLS tactic (heterogeneous)):
Consider a simple scenario with ns = 4 (s = 2, N = 8). The

defence aims to neutralize qF = 1 “fast” target and qL = 1
“slow” target with the maximum of E1 = 1 and E2 = 2
engagement opportunities, respectively. We will employ

the model (23) to determine the expression for the PRA,

S1,2(n2 = 4, qF = 1, qL = 1), using the recursive GF (22).

Note that the direct consequence of Eq. (22) yields the

following expression for the GF

G1,2(4, 1, 1) =
1∑

l
(1)
1 =0

bin(1,ms)(l
(1)
1 )×

1∑
l
(2)
1 =0

bin(1,ms)(l
(2)
1 )G1

(
2, l

(2)
1

)
,

where G1

(
2, l

(2)
1

)
is derived from Eq. (9), which gives

G1,2(4, 1, 1) = h2 [h2 +m2(h2 +m2)] +

m2 [h2 +m2(h2 +m2)] .

Using the generalized PRA model (23) for heterogeneous

targets, the expression for the PRA is

S1,2(4, 1, 1) = G1,2(4, 1, 1)
∣∣∣
q=2

= h2
2(1 + m2).

In the following section, we present numerical results for

two SLS tactics illustrated above.

VI. COMPUTATIONAL RESULTS

The effectiveness of the two SLS tactics developed in

sections III and V is validated through the computations of

the PRA for two different types of targets. Note that for the

second SLS tactic (fixed-size salvo SLS tactic developed in

section V), we provide the PRA for both homogeneous and

heterogeneous targets.

A. Variable Size Salvo SLS Tactic for Heterogeneous Targets

The performance of Soland’s variable size salvo SLS tactic

is tested in determining the maximum PRA for neutralizing

heterogeneous targets (i.e., “fast” and “slow” targets) using

the dynamic programming and genetic algorithm optimization

techniques as illustrated in section III. Note that, in the case

of the genetic algorithm, the results are based on 30 computer

runs.

We assume a total of five incoming targets, where the

number of targets with “fast” speed is qF = 2 and with “slow”

speed is qL = 3. The parameters of the genetic algorithm given

in Algorithm 1 are set as follows: population size r = 10,
number of generations GEN = 5, mutation rate pm = 0.6,
and the offset n̄ = 40.

We assume three possible sets of engagement opportuni-

ties, i.e., [e1 = 1, e2 = 2]T , [e1 = 2, e2 = 3]T , and

[e1 = 3, e2 = 4]T , satisfying e1 ≤ e2. The total number of

available interceptors to the defence is N = 20. Fig. 1 shows

the performance in computing the PRA for neutralizing five

targets with three different sets of engagement opportunities

using the genetic algorithm presented in Algorithm 1. We

considered the SSPK range h ∈ [0, 1]. As can be seen from

Fig. 1, it is natural that the PRA with engagement opportunities

e1 = 1, e2 = 2 is always less than that with e1 = 2, e2 = 3
since the defence has more engagement opportunities for

the second case. For the same reason, the PRA with the

engagement opportunities e1 = 3 and e2 = 4 should be higher

than that with the engagement opportunities e1 = 2 and e2 = 3
as evidenced by Fig. 1.

As for the computational complexity, Fig. 2 summarizes

the performance in computing the PRA with both the genetic

algorithm and the dynamic programming optimization for

fixed SSPK, h = 0.3, qF = 2, a2 = 3, and e1 = 2, e2 = 3 as

the number of available interceptors varies. Using an on-figure

magnifier in Fig. 2(a) at n = 25, we see that the PRA using

genetic algorithm optimization is in good agreement with

that using dynamic programming optimization (which gives

a global optimal PRA). Interestingly, the difference is less

than 0.5% which is practically negligible in the sense that the

accuracy of the SSPK (i.e., h in our case) does not likely yield

an accuracy of 0.5% in the PRA. However, the computation

of PRA is significantly faster using genetic algorithm when

the total number of available interceptors is large. Fig. 2(b)

reveals the time to compute the PRA for different numbers

of interceptors using a personal computer with the Intel(R)
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Fig. 1: Performance in computing PRA with genetic algorithm.

Core(TM) i3–2350M CPU2.30 GHz processor running 64-bit

Operating System (Windows 7) and 8 GB of installed memory.

As can be seen, the time to compute PRA using genetic

algorithm is higher than that using dynamic programming for

a small number of available interceptors (for N < 55). This is

simply because Algorithm 1 has to complete the computation

for all generations and populations regardless of the value

of number of interceptors. When N = 80, for instance, the

time to compute the PRA is ≈ 20 mins using the dynamic

programming optimization and it is less than 12 mins using

the genetic algorithm optimization technique. Furthermore,

the time complexity is monotonically increasing using the

dynamic programming optimization technique as expected,

while it is not the case using the genetic algorithm optimization

when N is large.

The above results clearly demonstrate that the genetic

algorithm is much faster than the dynamic programming

optimization for a large number of available interceptors to

the defence while maintaining near global optimality. This will

be significant in decision making processes as the defence has

only a limited time to respond to an air attack. However, this

will depend on the computational power of the processors on-

board a ship.

B. Performance Fixed-sized Salvo SLS Tactic

1) PRA for Homogeneous Targets: Following the theoret-

ical results presented in section V-A, we consider the case

when the defence has ns = 10 salvos of interceptors with

the salvo size s = 2 (SSPK, h ∈ [0, 1]) and it launches

salvos to neutralize q = 5 homogeneous targets in maximum

E = 4 engagement opportunities. Fig. 3 shows the PRAs,

S1(10, 5), S2(10, 5), S3(10, 5), and S4(10, 5) for engagement

opportunities, E = 1, E = 2, E = 3, and E = 4,
respectively. The PRAs, for each engagement opportunity,

are computed using the model (13), where the corresponding

recursive generating functions are derived directly from the

model (9). It is clear from Fig. 3 that the PRA is higher when
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Fig. 2: Performance in computing PRA with both genetic algorithm and
dynamic programming for SSPK = 0.3, qF = 2, qL = 3, and e1 =
2, e2 = 3 (a) PRA vs. number of available interceptors, and (b) time to

compute PRA vs. number of available interceptors.

the defence has more engagement opportunities, as expected.

For instance, when SSPK, h = 0.5, the PRAs for E = 1,
E = 2, E = 3, and E = 4 are ≈ 0.23, ≈ 0.72, ≈ 0.92, and

≈ 0.96, respectively.

2) PRA for Heterogeneous Targets: We repeat the same

scenario as presented in section VI-A except that we use

ns = 10 salvos of interceptors with salvo size s = 2 (N = 20)

to determine the PRA for heterogeneous targets. The results

are sumarized in Fig. 4, which immediately follows the gen-

eralized PRA model (23). In order to validate the results, we

show PRAs, S1,2(10, 2, 3), S2,3(10, 2, 3), and S3,4(10, 2, 3)
are bounded by the PRAs S1,1(10, 2, 3), S4,4(10, 2, 3). Note

that S1,1(10, 2, 3) and S4,4(10, 2, 3) mimic the PRAs as if

all five targets are homogeneous. As expected, PRAs for
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the engagement opportunities (E1 = 1, E2 = 2), (E1 =
2, E2 = 3), (E1 = 3, E2 = 4) are strictly non-decreasing

for neutralizing two types of targets with qF = 2 and qL = 3.
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The performance of the fixed-size salvo SLS tactic in

determining the PRA clearly demonstrates that this tactic is

robust in the sense that it gives the maximum PRA regardless

of the number and type of targets.

VII. CONCLUSION

In this paper, we developed two different SLS tactics

which can be applied to maritime air defence. The first SLS

tactic is an extension of Soland’s tactic where we consider

heterogeneous targets. The time complexity in computing the

PRA is compared using two different optimization techniques:

dynamic programming and genetic algorithm. It is shown that

the genetic algorithm optimization outperforms the dynamic

programming in terms of computational overhead (only for

large numbers of interceptors). This is significant as the

defence has only a limited time to make decisions and to

engage the targets. Even though we considered two different

target kinematics, the expression can be extended to compute

the PRA for n different target kinematics.

The second SLS tactic is proposed for robustness when the

defence is uncertain about the identity of targets and, hence,

it launches fixed-size salvos to targets at each engagement op-

portunity. We have developed a recursive generating function

to determine the PRA and other metrics for this tactic.

A possible future research direction of these two tactics is

to incorporate stochastic nature on the number of incoming

targets.
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